Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.218
Filtrar
1.
J Ethnopharmacol ; 325: 117888, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336185

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urban, is a medicinal herb with rich history of traditional use in Indian subcontinent. This herb has been valued for its diverse range of medicinal properties including memory booster, and also as a folk treatment for skin diseases, wound healing and mild diuretic. AIM OF STUDY: Aging is a gradual and continuous process of natural decay in the biological systems, including the brain. This work aims to evaluate the effectiveness of ethanolic extract of Centella asiatica (CAE) on age-associated cognitive impairments in rats, as well as the underlying mechanism. MATERIAL AND METHODS: Rats were allocated into five distinct groups of 5 animals each: Young rats (3 months old rats), middle-aged (m-aged) rats (13-14 months old), and the remaining three groups were comprised of m-aged rats treated with different concentrations of CAE, viz., 150, 300, and 450 mg/kg b. w., orally for 42 days. Y-maze, open field, novel object recognition, and elevated plus maze tests were used to assess animal behavior. The malondialdehyde (MDA), superoxide dismutase (SOD), and acetylcholinesterase (AChE) assays; and H&E staining were done in the rat brain to assess the biochemical and structural changes. CAE was also subjected to HPLC analysis, in vitro antioxidant and anti-cholinergic activity. The active compounds of CAE were docked with AChE and BuChE in molecular docking study. RESULTS: The results showed that CAE treatment improves behavioral performance; attenuates the age-associated increase in MDA content, SOD, and AChE activity; and reduces neuronal loss. In vitro study showed that CAE has concentration-dependent antioxidant and anti-AChE activity. Furthermore, the presence of Asiatic acid and Madecassic acid in CAE and their good binding with cholinergic enzymes (in silico) also suggest the anticholinergic effect of CAE. CONCLUSION: The findings of the current study show that the anticholinergic and antioxidant effects of CAE are attributable to the presence of Asiatic acid and Madecassic acid, which not only provide neuroprotection against age-associated cognitive decline but also reverse it.


Assuntos
Antioxidantes , Centella , Triterpenos Pentacíclicos , Triterpenos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Função Executiva , Acetilcolinesterase/metabolismo , Centella/química , Simulação de Acoplamento Molecular , Estresse Oxidativo , Antagonistas Colinérgicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Superóxido Dismutase/metabolismo
2.
Bioorg Chem ; 144: 107146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262088

RESUMO

Due to the important biological properties of dopamine, phenethylamine, and tyramine derivatives in the central nervous system, herein the synthesis of novel α-benzyl dopamine, phenethylamine, and tyramine derivatives is described. The title compounds were synthesized starting from 3-phenylpropanoic acids and methoxybenzenes in six or seven steps. Firstly, 3-(2,3-dimethoxyphenyl)propanoic acid (11) and 3-(3,4-dimethoxyphenyl)propanoic acid (12) were selectively brominated with N-bromosuccinimide (NBS). The Friedel-Crafts acylation of methoxylated benzenes with these brominated acids or commercially available 3-phenylpropanoic acid in polyphosphoric acid gave the desired dihydrochalcones. α-Carboxylation of dihydrochalcones, reduction of benzylic carbonyl groups, hydrolysis of esters to acid derivatives, and the Curtius rearrangement reaction of acids followed by in situ synthesis of carbamates from alkyl isocyanates and hydrogenolysis of the carbamates afforded the title compounds in good total yields. Alzheimer's disease (AD) and Parkinson's disease (PD) are chronic neurodegenerative diseases that become serious over time. However, the exact pathophysiology of both diseases has not been revealed yet. There have been many different approaches to the treatment of patients for many years, especially studies on the cholinergic system cover a wide area. Within the scope of this study, the inhibition effects of dopamine-derived carbamates and amine salts on the cholinergic enzymes AChE and BChE were examined. Dopamine-derived carbamate 24a-i showed inhibition in the micro-nanomolar range; compound 24d showed a Ki value of 26.79 nM against AChE and 3.33 nM against BChE, while another molecule, 24i, showed a Ki range of 27.24 nM and 0.92 nM against AChE and BChE, respectively. AChE and BChE were effectively inhibited by dopamine-derived amine salts 25j-s, with Ki values in the range of 17.70 to 468.57 µM and 0.76-211.23 µM, respectively. Additionally, 24c, 24e and 25m were determined to be 60, 276 and 90 times more selective against BChE than AChE, respectively.


Assuntos
Inibidores da Colinesterase , Dopamina , Humanos , Inibidores da Colinesterase/farmacologia , Propionatos , Relação Estrutura-Atividade , Antagonistas Colinérgicos/farmacologia , Sais , Acetilcolinesterase/metabolismo , Carbamatos/farmacologia , Fenetilaminas/farmacologia , Simulação de Acoplamento Molecular
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123669, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006865

RESUMO

Derivatives of thiazole-pyrazole fused benzo-coumarin compounds were successfully synthesized and characterized, followed by a comprehensive spectroscopic investigation on various photophysical properties in different media. The multipronged approach using steady state and time resolved fluorescence spectroscopy pointed out the impact of substitution in the estimated spectroscopic and other physicochemical properties of the systems. Further, the evaluation of anti-acetylcholinesterase (anti-AChE) activity yielded significant insight into the therapeutic potential of the synthesized coumarinyl compounds for the treatment of Alzheimer's disease (AD). The findings revealed a non-competitive mode of inhibition mechanism, with an estimated IC50 value of 67.72 ± 2.00 nM observed for one of the investigated systems as AChE inhibitor. Notably, this value is even lower than that of an FDA-approved AD drug Donepezil (DON), indicating the enhanced potency of the coumarin derivatives in inhibiting AChE. Interestingly, significant diminution in inhibition was observed in presence of human serum albumin (HSA) as evidenced by the relative increase in IC50 value by 8 âˆ¼ 39 % in different cases, which emphasized the role of albumin proteins to control therapeutic efficacies of potential medications. In-depth spectroscopic and in-silico analysis quantified the nature of interactions of the investigated systems with HSA and AChE. Overall, the outcomes of this study provide significant understanding into the biophysical characteristics of novel thiazole-pyrazole fused benzo-coumarin systems, which could aid in the development of new cholinergic agents for the treatment of AD and materials based on coumarin motifs.


Assuntos
Doença de Alzheimer , Albumina Sérica Humana , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Antagonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/uso terapêutico , Tiazóis/farmacologia , Tiazóis/química , Cumarínicos/farmacologia , Cumarínicos/química , Espectrometria de Fluorescência , Pirazóis/farmacologia , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
4.
Maturitas ; 172: 9-14, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054659

RESUMO

INTRODUCTION: Studies have shown that use of medicines with sedative or anticholinergic properties is associated with a decline in physical function; however, the effects have not been quantified, and it is not known how and which specific physical movements are affected. This prospective study quantified the impact of a change in sedative or anticholinergic load over time on 24-hour activity composition. METHODS: This study used data collected from a randomised trial assessing an ongoing pharmacist service in residential aged care. The 24-hour activity composition of sleep, sedentary behaviour, light-intensity physical activity, and moderate to vigorous physical activity was derived from 24-hour accelerometry bands. Mixed effect linear models were used to regress the multivariate outcome of 24-hour activity composition on medication load at baseline and at 12 months. A fixed effect interaction between trial stage and medication load was included to test for differing sedative or anticholinergic load effects at the two trial stages. RESULTS: Data for 183 and 85 participants were available at baseline and 12 months respectively. There was a statistically significant interaction between medication load and time point on the multivariate outcome of 24-hour activity composition (sedative F = 7.2, p < 0.001 and anticholinergic F = 3.2, p = 0.02). A sedative load increase from 2 to 4 over the 12-month period was associated with an average increase in daily sedentary behaviour by an estimated 24 min. CONCLUSION: As sedative or anticholinergic load increased, there was an increase in sedentary time. Our findings suggest wearable accelerometry bands are a possible tool for monitoring the effects on physical function of sedative and anticholinergic medicines. TRIAL REGISTRATION: The ReMInDAR trial was registered on the Australian and New Zealand Trials Registry ACTRN12618000766213.


Assuntos
Comportamento Sedentário , Punho , Humanos , Idoso , Antagonistas Colinérgicos/farmacologia , Hipnóticos e Sedativos , Estudos Prospectivos , Austrália , Acelerometria
5.
Anticancer Res ; 43(1): 455-461, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585172

RESUMO

BACKGROUND/AIM: Nocturia is defined as the symptom that an individual has to disrupt their sleep at night, for one or several times, in order to void. Nocturia is a bothersome event that markedly reduces a patient's quality of life. The aim of the study was to elucidate which drugs, prescribed to reduce nocturia, show real-world efficacy in patients with bladder storage symptoms. PATIENTS AND METHODS: One hundred consecutive patients who visited the Fukuoka University Medical Center were evaluated between May and July 2022. Anticholinergic drugs, ß3 adrenoceptor agonists, α1 blockers, desmopressin, and other medicines were prescribed for relieving nocturia. Desmopressin was used as second-line treatment of nocturia only in males with nocturnal polyuria. The association between each drug and actual decrease in nocturia was investigated using multivariate analysis. RESULTS: The number of nocturia episodes was reduced in patients using anticholinergic drugs, ß3 adrenoceptor agonists, and desmopressin (-1.4±0.9, -1.3±0.9, -2.0 ±0.8 episodes/night, respectively). Multivariate analysis for the entire cohort showed that anticholinergic drugs and ß3 adrenoceptor agonists were associated with significantly decreased nocturia episodes (p=0.01 and p=0.04, respectively). In males, only desmopressin was associated with a significant decrease in nocturia (p=0.03), and combination therapy significantly decreased the number of nocturia episodes compared to monotherapy (p=0.001). CONCLUSION: In a real-world clinical setting, anticholinergic drugs and ß3 adrenoceptor agonists were similarly effective in reducing nocturia. Administration of desmopressin combined with anticholinergic drugs and/or ß3 adrenoceptor agonists is the most effective method for reducing nocturia in male patients with both storage symptoms and nocturnal polyuria.


Assuntos
Noctúria , Bexiga Urinária , Humanos , Masculino , Antidiuréticos/uso terapêutico , Antidiuréticos/efeitos adversos , Antagonistas Colinérgicos/uso terapêutico , Antagonistas Colinérgicos/farmacologia , Desamino Arginina Vasopressina/uso terapêutico , Noctúria/tratamento farmacológico , Poliúria/induzido quimicamente , Poliúria/complicações , Poliúria/tratamento farmacológico , Qualidade de Vida , Receptores Adrenérgicos/uso terapêutico , Bexiga Urinária/patologia
6.
Sci Rep ; 12(1): 18078, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302937

RESUMO

Organophosphates (OPs) are inhibitors of acetylcholinesterase and have deleterious effects on the central nervous system. Clinical manifestations of OP poisoning include convulsions, which represent an underlying toxic neuro-pathological process, leading to permanent neuronal damage. This neurotoxicity is mediated through the cholinergic, GABAergic and glutamatergic (NMDA) systems. Pharmacological interventions in OP poisoning are designed to mitigate these specific neuro-pathological pathways, using anticholinergic drugs and GABAergic agents. Benactyzine is a combined anticholinergic, anti-NMDA compound. Based on previous development of novel GABA derivatives (such as prodrugs based on perphenazine for the treatment of schizophrenia and nortriptyline against neuropathic pain), we describe the synthesis and preliminary testing of a mutual prodrug ester of benactyzine and GABA. It is assumed that once the ester crosses the blood-brain-barrier it will undergo hydrolysis, releasing benactyzine and GABA, which are expected to act synergistically. The combined release of both compounds in the brain offers several advantages over the current OP poisoning treatment protocol: improved efficacy and safety profile (where the inhibitory properties of GABA are expected to counteract the anticholinergic cognitive adverse effects of benactyzine) and enhanced chemical stability compared to benactyzine alone. We present here preliminary results of animal studies, showing promising results with early gabactyzine administration.


Assuntos
Substâncias para a Guerra Química , Intoxicação por Organofosfatos , Pró-Fármacos , Animais , Benactizina , Antídotos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Organofosfatos , Acetilcolinesterase/metabolismo , Antagonistas Colinérgicos/farmacologia , Ésteres , Ácido gama-Aminobutírico , Intoxicação por Organofosfatos/tratamento farmacológico , Inibidores da Colinesterase/farmacologia
7.
Eur J Med Chem ; 234: 114248, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35299116

RESUMO

Lead optimization of a series of tryptophan-based nanomolar butyrylcholinesterase (BChE) inhibitors led to tertiary amines as highly potent, achiral, sp3-rich analogues with better synthetic accessibility and high selectivity over acetylcholinesterase (one to ten thousandfold). Taking it one step further, the introduction of a carbamate warhead on the well-explored reversible scaffold allowed conversion to pseudoirreversible inhibitors that bound covalently to BChE and prolonged the duration of inhibition (half-life of 14.8 h for compound 45a-carbamoylated enzyme). Additionally, N-hydroxyindole was discovered as a novel leaving group chemotype. The covalent mechanism of action was confirmed by time-dependency experiments, progress curve analysis, and indirectly by co-crystallization with the human recombinant enzyme. Two crystal structures of BChE-inhibitor complexes were solved and coupled with the supporting molecular dynamics simulations increased our understanding of the structure-activity relationship, while also providing the necessary structural information for future optimization of this series. Overall, this research demonstates the high versatility and potential of this series of BChE inhibitors.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Amidas/farmacologia , Aminas/farmacologia , Butirilcolinesterase/metabolismo , Antagonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Relação Estrutura-Atividade , Triptofano
8.
Neuropharmacology ; 206: 108940, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34982973

RESUMO

The interaction among the acetylcholine (ACh)-ergic REM-ON neurons in the pedunculo-pontine area (PPT), noradrenergic REM-OFF neurons in locus coeruleus (LC) and GABA-ergic neurons in the regulation of rapid eye movement sleep (REMS) have been studied in relative details; however, many questions including the role of dopamine (DA) remain unanswered. The ventral tegmental area (VTA) is rich in DA-ergic neurons, which have been implicated with schizophrenia and depression, when REMS is significantly affected. Also, some of the symptoms of REMS and these diseases are common. As the ACh-ergic REM-ON neurons in the PPT project to VTA, we proposed that such inputs might affect REMS, dreams and hallucinations. We recorded sleep-wake-REMS in freely moving, chronically prepared rats under three controlled experimental conditions. In different sets of experiments, either the ACh-ergic inputs to the VTA were blocked by local microinjection of Scopolamine (Scop) alone, or, the PPT neurons were bilaterally stimulated by Glutamate (Glut), or, the PPT neurons were stimulated by Glut in presence of Scop into the VTA. It was observed that Glut into PPT and Scop into the VTA significantly increased and decreased REMS, respectively. Additionally, PPT stimulation induced increased REMS was prevented in the presence of Scop into the VTA. Based on these findings we propose that inputs from ACh-ergic REM-ON neurons to VTA increase REMS and it could be a possible circuitry for expressions of hallucinations and dreams.


Assuntos
Neurônios Colinérgicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Tegmento Pontino/fisiologia , Sono REM/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Antagonistas Colinérgicos/farmacologia , Ratos , Escopolamina/farmacologia , Sono REM/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
9.
J Biomol Struct Dyn ; 40(6): 2489-2497, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146092

RESUMO

Gallocatechin gallate is a form of catechin and an ester of gallocatechin and gallic acid. This is an epimer of the gallate epigallocatechin. In this study, the effect of this molecule, containing a biologically active group, was investigated in terms of important metabolic enzymes (carbonic anhydrase isoenzymes I and II (hCA I and II), achethylcholinesterase (AChE) and α-glycosidase (α-Gly) enzymes). The molecular docking method used to compare the biological activities of the Catechin 5-O-gallate molecule against enzymes was used. Afterwards, the ADME/T analysis was performed to investigate the drug availability of the Catechin 5-O-gallate molecule and the parameters obtained from ADME/T analysis were examined. Continuation of this study, for evaluating antioxidant and radical scavenging capacity Catechin 5-O-gallate, cupric ion (Cu2+) reduction capacity by CUPRAC method, Fe3+-Fe2+ reducing capacity, DPPH free radical clarifying (DPPH·), ABTS radical clarifying (ABTS•+) were performed separately and during the study, trolox, α-tocopherol BHT and BHA were used as the reference antioxidant compound. Comparisons were applied with the four standard substances. Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Catequina , Anticonvulsivantes , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/farmacologia , Antagonistas Colinérgicos/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular
10.
Anesth Analg ; 134(1): 149-158, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252066

RESUMO

BACKGROUND: Some older adults show exaggerated responses to drugs that act on the brain. The brain's response to anesthetic drugs is often measured clinically by processed electroencephalogram (EEG) indices. Thus, we developed a processed EEG-based measure of the brain's resistance to volatile anesthetics and hypothesized that low scores on it would be associated with postoperative delirium risk. METHODS: We defined the Duke Anesthesia Resistance Scale (DARS) as the average bispectral index (BIS) divided by the quantity (2.5 minus the average age-adjusted end-tidal minimum alveolar concentration [aaMAC] inhaled anesthetic fraction). The relationship between DARS and postoperative delirium was analyzed in 139 older surgical patients (age ≥65) from Duke University Medical Center (n = 69) and Mt Sinai Medical Center (n = 70). Delirium was assessed by geriatrician interview at Duke, and by research staff utilizing the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) instrument at Mt Sinai. We examined the relationship between DARS and delirium and used the Youden index to identify an optimal low DARS threshold (for delirium risk), and its associated 95% bootstrap confidence bounds. We used multivariable logistic regression to examine the relationship between low DARS and delirium risk. RESULTS: The relationship between DARS and delirium risk was nonlinear, with higher delirium risk at low DARS scores. A DARS threshold of 28.755 maximized the Youden index for the association between low DARS and delirium, with bootstrap 95% confidence bounds of 26.18 and 29.80. A low DARS (<28.755) was associated with increased delirium risk in multivariable models adjusting for site (odds ratio [OR] [95% confidence interval {CI}] = 4.30 [1.89-10.01]; P = .001), or site-plus-patient risk factors (OR [95% CI] = 3.79 [1.63-9.10]; P = .003). These associations with postoperative delirium risk remained significant when using the 95% bootstrap confidence bounds for the low DARS threshold (P < .05 for all). Further, a low DARS (<28.755) was associated with delirium risk after accounting for opioid, midazolam, propofol, phenylephrine, and ketamine dosage as well as site (OR [95% CI] = 4.21 [1.80-10.16]; P = .002). This association between low DARS and postoperative delirium risk after controlling for these other medications remained significant (P < .05) when using either the lower or the upper 95% bootstrap confidence bounds for the low DARS threshold. CONCLUSIONS: These results demonstrate that an intraoperative processed EEG-based measure of lower brain anesthetic resistance (ie, low DARS) is independently associated with increased postoperative delirium risk in older surgical patients.


Assuntos
Anestésicos/farmacologia , Encéfalo/patologia , Eletroencefalografia/métodos , Delírio do Despertar/fisiopatologia , Complicações Pós-Operatórias/fisiopatologia , Idoso , Anestesia Geral/efeitos adversos , Antagonistas Colinérgicos/farmacologia , Monitores de Consciência , Delírio do Despertar/diagnóstico , Feminino , Humanos , Unidades de Terapia Intensiva , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Período Perioperatório , Complicações Pós-Operatórias/diagnóstico , Estudos Prospectivos , Risco , Fatores de Risco
11.
Molecules ; 26(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684676

RESUMO

Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3ß4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.


Assuntos
Receptores Nicotínicos , Sistema Respiratório , Acetilcolina/metabolismo , Animais , Asma/tratamento farmacológico , Asma/patologia , Antagonistas Colinérgicos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/fisiologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia
12.
J Alzheimers Dis ; 84(2): 671-690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569967

RESUMO

Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive functions decline, is a leading cause for dementia and currently ranked as the sixth foremost cause of death. As of present, treatment of AD is symptomatic without convincing therapeutic benefits and new, effective, therapeutic agents are pursued. Due to massive loss of cholinergic neurons and decreased acetylcholine levels, cholinesterase inhibitors like galantamine, remain the backbone of pharmacological treatment of the disease. In the present study, using behavioral and biochemical methods, four newly synthesized galantamine derivatives, Gal 34, Gal 43, Gal 44, and Gal 46, were evaluated for a beneficial effect in a scopolamine model of dementia in mice. They were designed to have all the advantages of galantamine and additionally to inhibit ß-secretase and exert favorable effects on plasma lipids. Behavioral tests included step-through inhibitory avoidance, T-maze, and the hole-board test, whereas biochemical evaluations involved assessment of acetylcholinesterase activity, brain monoamines levels, lipid peroxidation, catalase, glutathione peroxidase, and superoxide dismutase activities along with measurement of total glutathione. Results show that Gal 43, Gal 44, and, in particular, Gal 46 are especially effective in improving both short- and long-term memory and in the case of Gal 46 having a significant effect on exploratory activity as well. Although Gal 34 did not show behavioral effects as convincing as those of the other three galantamine derivatives, it demonstrated persuasive antioxidant and restorative capacities, making all four galantamine derivatives promising AD treatment agents and prompting further research, especially that in many of our studies they performed better than galantamine.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antagonistas Colinérgicos , Inibidores da Colinesterase/uso terapêutico , Galantamina/uso terapêutico , Escopolamina , Doença de Alzheimer/induzido quimicamente , Animais , Antioxidantes , Antagonistas Colinérgicos/administração & dosagem , Antagonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Galantamina/farmacologia , Masculino , Memória de Longo Prazo , Memória de Curto Prazo , Camundongos , Escopolamina/administração & dosagem , Escopolamina/farmacologia
13.
Sci Rep ; 11(1): 17525, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471145

RESUMO

Cholinergic modulation of brain activity is fundamental for awareness and conscious sensorimotor behaviours, but deciphering the timing and significance of acetylcholine actions for these behaviours is challenging. The widespread nature of cholinergic projections to the cortex means that new insights require access to specific neuronal populations, and on a time-scale that matches behaviourally relevant cholinergic actions. Here, we use fast, voltage imaging of L2/3 cortical pyramidal neurons exclusively expressing the genetically-encoded voltage indicator Butterfly 1.2, in awake, head-fixed mice, receiving sensory stimulation, whilst manipulating the cholinergic system. Altering muscarinic acetylcholine function re-shaped sensory-evoked fast depolarisation and subsequent slow hyperpolarisation of L2/3 pyramidal neurons. A consequence of this re-shaping was disrupted adaptation of the sensory-evoked responses, suggesting a critical role for acetylcholine during sensory discrimination behaviour. Our findings provide new insights into how the cortex processes sensory information and how loss of acetylcholine, for example in Alzheimer's Disease, disrupts sensory behaviours.


Assuntos
Acetilcolina/metabolismo , Neurônios Colinérgicos/metabolismo , Córtex Somatossensorial/metabolismo , Percepção do Tato/fisiologia , Animais , Antagonistas Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Estimulação Física , Escopolamina/farmacologia , Córtex Somatossensorial/efeitos dos fármacos
14.
Indian J Pharmacol ; 53(4): 294-297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414907

RESUMO

BACKGROUND: Preliminary data indicates there is a cholinergic basis to insulin secretion. AIMS & OBJECTIVE: To investigate the impact of oral anticholinergics on insulin secretion in subjects with impaired glucose tolerance (IGT), in comparison with volunteers having normal glucose tolerance (NGT). Material & Methods: This prospective observational study recruited 10 IGT and 10 NGT subjects. An oral glucose tolerance test (OGTT) was conducted twice in the absence and presence of hyoscine butyl-bromide (HBB). The plasma glucose (PG) and insulin levels were serially estimated at 30-min increments for 2 h after the OGTT. Early (ΔI30/ΔPG30) & late (insulin/PGAUC 60-120) phase insulin activity were assessed subsequently. RESULTS: The study constituted of 10 IGT (4M/6F, BMI: 28.80 ± 2.30) and 10 NGT (5M/5F, BMI: 23.00 ± 0.80) subjects. In the NGT group, the pre-HBB mean glucose levels (0-120 min) were comparable with those recorded after HBB intake. However, after HBBB, the mean insulin levels decreased significantly at t = 90 and 120min, confirmed by attenuated late phase insulin activity in IGT (P = 0.023) & NGT (P = 0.006) group. On the other hand, in the IGT group, however, HBB did not impact on the mean PG and insulin levels (0-120 min). CONCLUSIONS: Our study findings indicate that insulin secretion is influenced by cholinergic system and that oral anticholinergics may attenuate the late phase insulin activity in varying degrees of glycemic status.


Assuntos
Antagonistas Colinérgicos/farmacologia , Intolerância à Glucose/metabolismo , Glucose/administração & dosagem , Secreção de Insulina/efeitos dos fármacos , Administração Oral , Adulto , Idoso , Glicemia/análise , Brometo de Butilescopolamônio/farmacologia , Feminino , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
15.
Invest Ophthalmol Vis Sci ; 62(7): 8, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096973

RESUMO

Purpose: Patients that medicate with antidepressants commonly report dryness of eyes. The cause is often attributed to the anticholinergic properties of the drugs. However, regulation of tear production includes a substantial reflex-evoked component and is regulated via distinct centers in the brain. Further, the anticholinergic component varies greatly among antidepressants with different mechanisms of action. In the current study it was wondered if acute administration of antidepressants can disturb production of tears by affecting the afferent and/or central pathway. Methods: Tear production was examined in vivo in anesthetized rats in the presence or absence of the tricyclic antidepressant (TCA) clomipramine or the selective serotonin reuptake inhibitor (SSRI) escitalopram. The reflex-evoked production of tears was measured by challenging the surface of the eye with menthol (0.1 mM) and cholinergic regulation was examined by intravenous injection with the nonselective muscarinic agonist methacholine (1-5 µg/kg). Results: Acute administration of clomipramine significantly attenuated both reflex-evoked and methacholine-induced tear production. However, escitalopram only attenuated reflex-evoked tear production, while methacholine-induced production of tears remained unaffected. Conclusions: This study shows that antidepressants with different mechanisms of action can impair tear production by attenuating reflex-evoked signaling. Further, antimuscarinic actions are verified as a likely cause of lacrimal gland hyposecretion in regard to clomipramine but not escitalopram. Future studies on antidepressants with different selectivity profiles and mechanisms of action are required to further elucidate the mechanisms by which antidepressants affect tear production.


Assuntos
Citalopram/farmacologia , Clomipramina/farmacologia , Síndromes do Olho Seco , Potenciais Evocados Visuais , Aparelho Lacrimal , Lágrimas/fisiologia , Animais , Antidepressivos/farmacologia , Antagonistas Colinérgicos/farmacologia , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/fisiopatologia , Potenciais Evocados Visuais/efeitos dos fármacos , Potenciais Evocados Visuais/fisiologia , Aparelho Lacrimal/efeitos dos fármacos , Aparelho Lacrimal/fisiologia , Cloreto de Metacolina/farmacologia , Mióticos/farmacologia , Ratos
16.
Cochrane Database Syst Rev ; 5: CD013540, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34097766

RESUMO

BACKGROUND: Medications with anticholinergic properties are commonly prescribed to older adults. The cumulative anticholinergic effect of all the medications a person takes is referred to as the 'anticholinergic burden' because of its potential to cause adverse effects. It is possible that high anticholinergic burden may be a risk factor for development of cognitive decline or dementia. There are various scales available to measure anticholinergic burden but agreement between them is often poor. OBJECTIVES: To assess whether anticholinergic burden, as defined at the level of each individual scale, is a prognostic factor for future cognitive decline or dementia in cognitively unimpaired older adults. SEARCH METHODS: We searched the following databases from inception to 24 March 2021: MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), CINAHL (EBSCOhost), and ISI Web of Science Core Collection (ISI Web of Science). SELECTION CRITERIA: We included prospective and retrospective longitudinal cohort and case-control observational studies with a minimum of one year' follow-up that examined the association between an anticholinergic burden measurement scale and future cognitive decline or dementia in cognitively unimpaired older adults. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion, and undertook data extraction, assessment of risk of bias, and GRADE assessment. We extracted odds ratios (OR) and hazard ratios, with 95% confidence intervals (CI), and linear data on the association between anticholinergic burden and cognitive decline or dementia. We intended to pool each metric separately; however, only OR-based data were suitable for pooling via a random-effects meta-analysis. We initially established adjusted and unadjusted pooled rates for each available anticholinergic scale; then, as an exploratory analysis, established pooled rates on the prespecified association across scales. We examined variability based on severity of anticholinergic burden. MAIN RESULTS: We identified 25 studies that met our inclusion criteria (968,428 older adults). Twenty studies were conducted in the community care setting, two in primary care clinics, and three in secondary care settings. Eight studies (320,906 participants) provided suitable data for meta-analysis. The Anticholinergic Cognitive Burden scale (ACB scale) was the only scale with sufficient data for 'scale-based' meta-analysis. Unadjusted ORs suggested an increased risk for cognitive decline or dementia in older adults with an anticholinergic burden (OR 1.47, 95% CI 1.09 to 1.96) and adjusted ORs similarly suggested an increased risk for anticholinergic burden, defined according to the ACB scale (OR 2.63, 95% CI 1.09 to 6.29). Exploratory analysis combining adjusted ORs across available scales supported these results (OR 2.16, 95% CI 1.38 to 3.38), and there was evidence of variability in risk based on severity of anticholinergic burden (ACB scale 1: OR 2.18, 95% CI 1.11 to 4.29; ACB scale 2: OR 2.71, 95% CI 2.01 to 3.56; ACB scale 3: OR 3.27, 95% CI 1.41 to 7.61); however, overall GRADE evaluation of certainty of the evidence was low. AUTHORS' CONCLUSIONS: There is low-certainty evidence that older adults without cognitive impairment who take medications with anticholinergic effects may be at increased risk of cognitive decline or dementia.


ANTECEDENTES: A los adultos mayores se les prescriben con frecuencia fármacos con propiedades anticolinérgicas. El efecto anticolinérgico acumulado de todos los fármacos que toma una persona se denomina "carga anticolinérgica" por su potencial para causar efectos adversos. Es posible que una alta carga anticolinérgica sea un factor de riesgo para la aparición de un deterioro cognitivo o la demencia. Existen varias escalas para medir la carga anticolinérgica, pero la concordancia entre ellas suele ser mala. OBJETIVOS: Evaluar si la carga anticolinérgica, definida a nivel de cada escala individual, es un factor pronóstico de un futuro deterioro cognitivo o demencia en adultos mayores sin deterioro cognitivo. MÉTODOS DE BÚSQUEDA: Se realizaron búsquedas en las siguientes bases de datos desde su creación hasta el 24 de marzo de 2021: MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), CINAHL (EBSCOhost) e ISI Web of Science Core Collection (ISI Web of Science). CRITERIOS DE SELECCIÓN: Se incluyeron los estudios observacionales de cohortes y de casos y controles longitudinales prospectivos y retrospectivos con un seguimiento mínimo de un año, que examinaron la asociación entre una escala de medición de la carga anticolinérgica y el futuro deterioro cognitivo o demencia en adultos mayores sin deterioro cognitivo. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión, de forma independiente, evaluaron los estudios para su inclusión y realizaron la extracción de los datos, la evaluación del riesgo de sesgo y la evaluación GRADE. Se extrajeron los odds ratios (OR) y los cociente de riesgos instantáneos, con intervalos de confianza (IC) del 95%, y los datos lineales sobre la asociación entre la carga anticolinérgica y el deterioro cognitivo o la demencia. La intención fue agrupar cada métrica por separado; sin embargo, sólo los datos basados en el OR fueron aptos para agruparlos mediante un metanálisis de efectos aleatorios. Inicialmente se establecieron las tasas agrupadas ajustadas y no ajustadas para cada escala anticolinérgica disponible; luego, como un análisis exploratorio, se establecieron las tasas agrupadas sobre la asociación predeterminada entre las escalas. Se examinó la variabilidad según la intensidad de la carga anticolinérgica. RESULTADOS PRINCIPALES: Se identificaron 25 estudios que cumplían los criterios de inclusión (968 428 adultos mayores). Veinte estudios se realizaron en ámbitos de atención comunitaria, dos en centros de atención primaria y tres en ámbitos de atención secundaria. Ocho estudios (320 906 participantes) proporcionaron datos adecuados para el metanálisis. La escala Anticholinergic Cognitive Burden (escala ACB) fue la única escala con datos suficientes para un metanálisis "basado en la escala". Los OR no ajustados indicaron un aumento en el riesgo de deterioro cognitivo o demencia en los adultos mayores con sobrecarga anticolinérgica (OR 1,47; IC del 95%: 1,09 a 1,96) y los OR ajustados indicaron igualmente un aumento en el riesgo de sobrecarga anticolinérgica, definida según la escala ACB (OR 2,63; IC del 95%: 1,09 a 6,29). El análisis exploratorio que combina los OR ajustados entre las escalas disponibles apoyó estos resultados (OR 2,16; IC del 95%: 1,38 a 3,38) y hubo evidencia de variabilidad en el riesgo según la intensidad de la carga anticolinérgica (1 en escala ACB): OR 2,18; IC del 95%: 1,11 a 4,29; 2 en escala ACB: OR 2,71; IC del 95%: 2,01 a 3,56; 3 en escala ACB: OR 3,27; IC del 95%: 1,41 a 7,61); sin embargo, la evaluación global de la certeza de la evidencia con el método GRADE fue baja. CONCLUSIONES DE LOS AUTORES: Existe evidencia de certeza baja de que los adultos mayores sin deterioro cognitivo que toman fármacos con efectos anticolinérgicos podrían tener un mayor riesgo de deterioro cognitivo o demencia.


Assuntos
Antagonistas Colinérgicos/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Demência/induzido quimicamente , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Viés , Antagonistas Colinérgicos/farmacologia , Intervalos de Confiança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Razão de Chances , Prognóstico , Síndrome , Resultado do Tratamento
17.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795516

RESUMO

The ability to monitor the release of neurotransmitters during synaptic transmission would significantly impact the diagnosis and treatment of neurological diseases. Here, we present a DNA-based enzymatic nanosensor for quantitative detection of acetylcholine (ACh) in the peripheral nervous system of living mice. ACh nanosensors consist of DNA as a scaffold, acetylcholinesterase as a recognition component, pH-sensitive fluorophores as signal generators, and α-bungarotoxin as a targeting moiety. We demonstrate the utility of the nanosensors in the submandibular ganglia of living mice to sensitively detect ACh ranging from 0.228 to 358 µM. In addition, the sensor response upon electrical stimulation of the efferent nerve is dose dependent, reversible, and we observe a reduction of ∼76% in sensor signal upon pharmacological inhibition of ACh release. Equipped with an advanced imaging processing tool, we further spatially resolve ACh signal propagation on the tissue level. Our platform enables sensitive measurement and mapping of ACh transmission in the peripheral nervous system.


Assuntos
Acetilcolina/metabolismo , Técnicas Biossensoriais/métodos , Gânglios Parassimpáticos/metabolismo , Nanotecnologia/métodos , Acetilcolina/análise , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Bungarotoxinas/farmacologia , Carbocianinas/química , Antagonistas Colinérgicos/farmacologia , DNA/química , Feminino , Corantes Fluorescentes/química , Gânglios Parassimpáticos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Colinérgicos/metabolismo
18.
Sci Rep ; 11(1): 9191, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911165

RESUMO

Anticholinergics, therapeutic agents for overactive bladder, are clinically suggested to reduce urine output. We investigated whether this effect is due to bladder or kidney urine reabsorption. Various solutions were injected into the bladder of urethane-anesthetized SD rats. The absorption rate for 2 h was examined following the intravenous administration of the anticholinergics imidafenacin (IM), atropine (AT), and tolterodine (TO). The bilateral ureter was then canulated and saline was administered to obtain a diuretic state. Anticholinergics or 1-deamino-[8-D-arginine]-vasopressin (dDAVP) were intravenously administered. After the IM and dDAVP administrations, the rat kidneys were immunostained with AQP2 antibody, and intracellular cAMP was measured. The absorption rate was ~ 10% of the saline injected into the bladder and constant even when anticholinergics were administered. The renal urine among peaked 2 h after the saline administration. Each of the anticholinergics significantly suppressed the urine production in a dose-dependent manner, as did dDAVP. IM and dDAVP increased the intracellular cAMP levels and caused the AQP2 molecule to localize to the collecting duct cells' luminal side. The urinary reabsorption mechanism through the bladder epithelium was not activated by anticholinergic administration. Thus, anticholinergics suppress urine production via an increase in urine reabsorption in the kidneys' collecting duct cells via AQP2.


Assuntos
Antagonistas Colinérgicos/farmacologia , Rim/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Animais , Antidiuréticos/efeitos adversos , Antidiuréticos/farmacologia , Aquaporina 2/metabolismo , AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/efeitos adversos , Desamino Arginina Vasopressina/farmacologia , Eletrólitos/metabolismo , Feminino , Rim/metabolismo , Concentração Osmolar , Ratos Sprague-Dawley , Reabsorção Renal/fisiologia , Sódio/urina , Bexiga Urinária/efeitos dos fármacos , Micção/efeitos dos fármacos
19.
Neurosci Lett ; 755: 135913, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33895274

RESUMO

Schizophrenia modeling by disrupting prepulse inhibition (PPI) is one of the most frequently used psycho-pharmacological methods by administering pharmacological agents to stimulate disruption. However, since PPI is also a biological indicator of schizophrenia, it is possible to classify subjects based on their basal PPI values and group them as "low inhibition" and "high inhibition without taking any pharmacological agent. Therefore this study was conducted to show that rats can be divided into groups in terms of susceptibility to schizophrenia according to basal PPI values. It was also observed that these groups might give different responses to different pharmacological agents (apomorphine, amphetamine, MK-801, scopolamine, nicotine, caffeine). Male Sprague Dawley rats (250-350 g) were used in the study. To examine the effects of different pharmacological agents on the groups, apomorphine (0.5 mg/kg and 1 mg/kg), amphetamine (4 mg/kg), MK-801 (0.05 mg/kg and 0.15 mg/kg), scopolamine (0.4 mg/kg), nicotine (1 mg/kg) and caffeine (10 mg/kg and 30 mg/kg) were used. Amphetamine showed a disruptive effect on PPI in both low and high inhibitory groups, while apomorphine, MK-801, scopolamine, and nicotine showed PPI decrease only in the high inhibitory group. Besides, caffeine decreased PPI levels at two doses in the high inhibitory group; however, 10 mg/kg dose caffeine was increased only in the low inhibitory group. According to the data obtained from this study, rats can be grouped with baseline inhibition values by using PPI, and response differences of pharmacological agents to groups may vary.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Antagonistas Colinérgicos/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas Nicotínicos/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Estimulação Acústica/métodos , Anfetamina/farmacologia , Animais , Apomorfina/farmacologia , Cafeína/farmacologia , Maleato de Dizocilpina/farmacologia , Masculino , Nicotina/farmacologia , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Escopolamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...